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Bimolecular nucleophilic substitution reactions have been the 
focus of extensive theoretical and experimental work in recent 
years due to their central importance in organic chemistry.12 

Nevertheless, fewer studies have addressed the role of solvation 
in gas-phase SN2 reactions.3,4 In particular, Truhlar and co­
workers have noted the dearth of experimental information on 
solvent kinetic isotope effects.4 

In this paper we describe our studies of the SN2 reactions of 
F-, F-(H2O), and F-(D2O) with CH3X and CD3X, where X = 
Cl, Br, and I, using the tandem flowing afterglow selected ion 
flow tube technique. In keeping with previous work,1^ we observe 
inverse kinetic isotope effects for deuteration of methyl halide; 
moreover, we observe for the first time substantial inverse kinetic 
isotope effects for deuteration of the solvent. 
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The reactions were carried out at 302 ± 3 K in a tandem 
flowing afterglow selected ion flow tube3 at a helium buffer gas 
pressure of 0.5 Torr and a flow of 225 STP cm3 s-1. Fluoride ions 
were formed by electron impact on nitrogen trifluoride; hydrated 
fluoride ions were generated by reacting fluoride ions with a 
mixture of tetrahydrofuran6 and H2O or D2O. Mass-selected 
reagent ions were allowed to react with a measured flow of methyl 
halide,7 added through a manifold of reagent inlets. Reaction 
rate coefficients and product distributions were determined by 
standard methods. 

The displaced halide ion X- is the sole product in the reactions 
of F - (eq 1) and the major product in the reactions of F-(H2O) 
(eq 2) and F-(D2O) (eq 3), where solvated X- is also formed.8 

F" + CH3X/CD3X — X" + CH3F/CD3F (1) 

F(H2O) + CH3X/CD3X — X" + CH3F/CD3F + H2O (2a) 

— X-(H2O) + CH3F/CD3F (2b) 

F(D2O) + CH3X/CD3X — X" + CH3F/CD3F + D2O (3a) 

— X-(D2O) + CH3F/CD3F (3b) 

The rate coefficients,9-10 reaction efficiencies,11 and kinetic 
isotope effects for these reactions are summarized in Table 1. In 
keeping with earlier results, these data demonstrate that SN2 
reactivity increases as the reaction exothermicity12 increases, i.e., 
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Table 1. Rate Coefficients, Reaction Efficiencies, and Kinetic 
Isotope Effects 

reaction 

F- + CH3Cl 
F-(H2O) + CH3Cl 
F-(D2O) + CH3Cl 
F- + CD3Cl 
F-(H2O) + CD3Cl 
F-(D2O) + CD3Cl 

F-+ CH3Br 
F-(H2O) + CH3Br 
F-(D2O) + CH3Br 
F- + CD3Br 
F-(H2O) + CD3Br 
F-(D2O) + CD3Br 

F- + CH3I 
F-(H2O) + CH3I 
F-(D2O) + CH3I 
F- + CD3I 
F-(H2O) + CD3I 
F-(D2O) + CD3I 

k? 

14.1 ±0.1 
0.149 ±0.002 
0.230 ± 0.008 

15.6 ±0.2 
0.175 ±0.005 
0.268 ± 0.002 

18.8 ±0.2 
4.97 ± 0.05 
5.99 ± 0.06 

19.2 ± 0.4 
5.41 ± 0.07 
6.42 ± 0.07 

19.4 ±0.2 
8.64 ± 0.09 
9.76 ±0.10 

19.7 ±0.4 
9.38 ±0.10 

10.3 ±0.5 

k/ 
*ADO» 

0.61 
0.0080 
0.013 
0.68 
0.0095 
0.015 

0.84 
0.29 
0.35 
0.86 
0.32 
0.38 

0.87 
0.51 
0.59 
0.89 
0.56 
0.63 

(CH3X/CD3X) 

0.90 ± 0.02 
0.85 ± 0.03 
0.86 ± 0.03 

0.98 ± 0.02 
0.92 ± 0.02 
0.93 ± 0.02 

0.98 ± 0.05 
0.92 ± 0.05 
0.95 ± 0.05 

*H/*DC 

(H20/D20) 

0.65 ± 0.03 

0.65 ± 0.02 

0.83 ± 0.02 

0.84 ± 0.02 

0.89 ± 0.05 

0.91 ± 0.05 
d Units of 10"10 cm3 s"1; error bars represent one standard deviation 

of the mean of 3 or more measurements, or ±1%, whichever is larger; 
absolute accuracy is ±25%. 'Reference 11.eErrors bars reflect the 
propagation of stated errors in the rate coefficients. To obtain accurate 
isotope effects, the relevant rate coefficients, kn and kt>, were measured 
within a period of a few days. Experimental checks indicate that over 
this period, the rate coefficients for CH3Cl and CH3Br are reproducible 
to better than ±5% and the isotope effects (^HMD) to better than ±3%; 
for CH3I these values are ±10% and ±5%, respectively. 

for a given nucleophile, the rate coefficients increase in the 
sequence CH3CI < CH3Br < CH3I. Similarly, for a given methyl 
halide, reactivity decreases with solvation; this effect is most 
dramatic for CH3Cl, where solvation lowers the rate coefficient 
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by 2 orders of magnitude. We note that kinetic isotope effects 
are absent for extremely rapid reactions but become evident for 
slower processes, where the height of the central barrier is 
important. Inverse kinetic isotope effects are observed for 
deuteration of the methyl halide with kH/kD as small as 0.85 
(fc[F-(H20) + CH3Cl]/fc[F-(H20) + CD3CI]). More impor­
tantly, significant inverse kinetic isotope effects are also observed 
for deuteration of the solvent molecule13 with kK/kD as small as 
0.65 (Jk[F-(H2O) + CD3Cl]/Jk[F-(D2O) + CD3Cl]). These results 
are in excellent agreement with recent theoretical findings of Hu 
and Truhlar.14 Their work predicts that both low- and high-
frequency vibrations at the transition state make significant 
contributions to the inverse kinetic isotope effects. 

The interplay of experiment and theory provides valuable insight 
into the gas-phase SN2 reactions of solvated nucleophiles. Further 
studies are underway in this laboratory to explore the kinetic 
isotope effects in reactions of more highly hydrated nucleophiles15 

as well as nucleophiles complexed by other solvent molecules. 
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